Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of civil Engineering

BCE603- IRRIGATION ENGINEERING

Sixth Semester, 2017 - 18 (even Semester)

Course (catalog) description

To expose the student to different phases in Water Resources Management and National Water Policy. Further they will be imparted required knowledge on Reservoir planning, management and economic analysis including Irrigation and Irrigation management practices

Compulsory/Elective course : Compulsory for CE students

Credit / Contact hours : 3 credits / 45 hours

Course Coordinator : Mr.S.Rajesh

Instructors :

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Mr.S.Rajesh	Third year CE			Rajeshskr06@gmail.com	9.00 - 9.50 AM
B.Kaviya	Third year CE				12.45 - 1.15 PM

Relationship to other courses:

Pre –requisites : BCE 304 Fluid Mechanics

Assumed knowledge : Basic knowledge in Water Resources Management

Following courses : BCE 502 Applied Hydraulic Engineering

Syllabus Contents

UNIT I IRRIGATION AS A SCIENCE

9hrs

Definition, Need, Benefit, Historical Development, Scope in the country and the state - Sources for irrigation, wells, springs, rivers, streams, tanks, reservoirs - Flow and Lift irrigation. Methods of flow irrigation - Devices and equipments for lift irrigation - Duty, different concepts of duty and factors affecting duty.

UNIT II CROP WATER REQUIREMENTS

9hrs

Soil – plant – water relationship – Evapo transpiration – consumptive use - Perennial, Annual and Seasonal crops - Principal irrigated, dry and wet irrigated crops - Assessment of crop water requirements - Effective rainfall - Net irrigation requirements for principal crops - Irrigational quality - Salt resistant crops - Water logging, remedial measures.

UNIT III CONVEYANCE AND DISTRIBUTION OF IRRIGATION WATER

9hrs

Head works – Diversion and storage structures -Canals unlined and lined. Canal alignments -contour ridge, Branch canals, minors, water course and notches - Control structures - drops, escapes, shutters and operating devices, division boxes - Cross drainage structures- under tunnels, aqueducts, siphons, siphon aqueducts - Cross masonry structures - road and railway bridges.

UNIT IV IRRIGATION WATER MANAGEMENT

9hrs

Need for optimization of water use - Management and productivity - Minimizing irrigation water losses - Operational rules for regulation - physical structures for management on farm development works - Participatory Irrigation Management (PIM) - Water Users Associations (WUA) - Training the water users.

UNIT V DESIGN OF IRRIGATION STRUCTURES

9 hrs

Sluices and surplus weirs in tanks - Earth dam section, homogenous and zoned. Anicuts and weirs on solid and permeable foundation - Head regulators, canal drops, canal siphons and aqueducts, under tunnels - Simple design of masonry and earth dams- Designing channels- Computer aided designs.

Total 45 hours

TEXT BOOKS:

- 1. Sharma R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBII Publishing Company, New Delhi, 2002.
- 2. Sathyanarayanan Murthy, "Irrigation Design and Drawing", Published by Mrs.L.Banumathi, Tuni, East Godavari District. A.P. 1998.

REFERENCES:

- 1. Michael A.M,"Irrigation Theroy and practice", Vikas Publishing House, 2000.
- 2. Hand Book on irrigation system operation Practices, Water Management and training Project Technical Report No.33. CWC, 1990.
- 3. Hand Book for improving Irrigation System Maintenance Practices, Water Management and Training Report No.19A, CWC, Delhi, 1989.

Computer usage:

Professional component

General-0%Basic Sciences-0%Engineering sciences & Technical arts-0%Professional subject-100%

Broad area: Water Resources Management | Design cross drainage works

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To expose the student to different phases in Water Resources Management and National Water		Correla	tes to
Policy. Further they will be imparted required knowledge on Reservoir planning, management and		program	
economic analysis including Irrigation and Irrigation management practices		outcome	
	Н	M	L
Estimate water requirements for irrigation and drinking	d	а	
2. Estimate consumptive use of water for irrigation	d	а	
3. Perform water resources and prepare water budget	d	а	
Prepare irrigation scheduling and water distribution for various crops.	d,c	а	
5. Design cross drainage works	d	а	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	Topics	Problem solving (Yes/No)	Text / Chapter	
UNIT I	IRRIGATION AS A SCIENCE			
1.	Definition, Need, Benefit, Historical	No		
2.	Development, Scope in the country	No		
3.	The state - Sources for irrigation	No	_	
4.	wells, springs, rivers, streams, tanks, reservoirs	No		
5.	Flow and Lift irrigation	No	[T1]	
6.	Methods of flow irrigation	No	[R3]	
7.	Devices and equipments for lift irrigation	No		
			_	
8.	Duty, different concepts of duty	No	_	
9.	factors affecting duty	No		
UNIT II	CROP WATER REQUIREMENTS			
10.	Soil – plant – water relationship	No		
11.	Evapo transpiration, consumptive use	No		
12.	Perennial, Annual and Seasonal crops	No	[74]	
13.	Principal irrigated dry and wet irrigated crops	No	── [T1] [R1]	
14.	Assessment of crop water requirements	No		
15.	Effective rainfall	No		
16.	Net irrigation requirements for principal crops	No		
17.	Irrigational quality , Salt resistant crops	No		
18.	Water logging, remedial measures	No	_	
UNIT III	CONVEYANCE AND DISTRIBUTION OF IRRIGATION WATER	<u>.</u>		
19.	Head works, Diversion and storage structures	No		
20.	Canals unlined and lined	No		
21.	Canal alignments -contour ridge, Branch canals	No		
22.	minors, water course and notches	No		
23.	Control structures - drops, escapes,	No	[R1]	
24.	shutters and operating devices, division boxes	No	[]	
25.	Cross drainage structures- under tunnels, aqueducts	No		
26.	siphons, siphon aqueducts	No	7	
27.	Cross masonry structures - road and railway bridges.	No		
UNIT IV	IRRIGATION WATER MANAGEMENT			
28.	Need for optimization of water use	No		
29.	Management and productivity	No		
30.	Minimizing irrigation water losses	No		
31.	Operational rules for regulation	No		
32.	physical structures for management	No	[T1]	
			[R1]	
33.	on farm development works	No		

35.	Water Users Associations (WUA)	No	
36.	Training the water users.	No	
UNIT V	DESIGN OF IRRIGATION STRUCTURES		
37.	Sluices and surplus weirs in tanks	No	
38.	Earth dam section,. and	No	
39.	homogenous and zoned	No	
40.	Anicuts	No	[T2] [R1]
41.	weirs on solid and permeable foundation	No	, [IVI]
42.	Head regulators, canal drops, canal siphons and	No	
43.	aqueducts, under tunnels		
44.	Simple design of masonry and earth dams-		
45.	Designing channels- Computer aided designs.	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Assignment	-	5%
Attendance	-	10%
Final exam	-	70%

Prepared by: Mr S.Rajesh Asst Prof , Department of CE Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) The ability to identify, formulate, and solve engineering problems
- c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d) The ability to design and conduct experiments, as well as to analyze and interpret data
- e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f) The ability to apply reasoning informed by the knowledge of contemporary issues
- g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) The ability to understand professional and ethical responsibility and apply them in engineering practices
- i) The ability to function on multidisciplinary teams
- j) The ability to communicate effectively with the engineering community and with society at large
- k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the chosen field of Engineering and Technology.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in the appropriate field of Engineering and Technology, designing, implementing, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: SKILL:

To provide Industry based training for developing professional skills and soft skills such as proficiency in languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

Course Teacher	Signature
Mr.S.Rajesh	
Ms.B.Kaviya	

Course Coordinator HOD/Civil